

Strategies for
Mac OS and

Rhapsody
Kendall Luck

Power Mac
Product Marketing

One Year Later

*Shipping Hardware: Apple, DayStar, Power
Computing, UMAX

*MP apps last year: Adobe, Deneba, Electric
Image, Metrowerks, MetaTools, Strata and
Specular

* New app support for Apple MP API:
Lightworks, Orphan Technologies, Be Inc.,
Pixel, Terran Interactive, Vertigo, NewTek

1997 PowerPC Directions

“ 400 MHz

Next Generation
Processing power

—

|k". VOOV willlw NN

Notebooks and
Entry Systems

96 97798

MP Goals

*System 7

— Continued support for the Apple MP API
* Rhapsody

— Achieve SMP

How to Get More Information

* Apple HW Evangelist—David Masamitsu
[mpevangelism (@apple.com]

Strategies for
Mac OS and

Rhapsody

Russell Williams

Senior Engineer

Still a Major Direction

* Parallelism at all levels: instruction,
data, thread

* Threading especially relevant to 3D
and multimedia

* MP: Proven safe and effective

* Coming to your customers’ desktops

— Processors will be free:

*By 2000, ~100M transistors / chip
*Today, 603e core is ~.6M transistors

One Model, One API,
Two Implementations

*Asymmetric in Mac OS
* Symmetric in Rhapsody

* Runs on all Power Macintoshes, both UP
and MP

* Compute-intensive threads in Mac OS

* Native Rhapsody apps get more powertful
models

The Model

* Hardware is symmetric
g — CPUs are the same
— Caches are coherent

*Memory is shared between threads
* Coarse-grained, compute-only threads

* MP tasks scheduled preemptively on
each CPU

* No direct toolbox or OS calls
*Main thread must poll in event loop

The API

*20 calls—two new ones since last year

*2 concepts:
— Tasks / threads (nomenclature clash)
— Synchronization / communication

* MPRPC allows callback to main thread
*Supported in Mac OS, Rhapsody Blue Box

Tasks / Threads

*Scheduled preemptively on all processors
*Scheduling algorithms not specified
* On Rhapsody:

MPTask == NSThread ==

Java thread == cthread == Mach thread

Synchronization

* Never synchronize via scheduling
(no safety in WaitNextEvent)

* Only single aligned scalar stores are
inherently atomic

* Synchronization facilities:
— Atomic operations (lockless)
— Semaphores
— Critical regions
— Primitive messages

Mac OS Implementation

*Asymmetric OS, symmetric AP1
- *VM not supported except on UP
*Limited preemption on main cpu

* Debugging via Mac OS-only routines and
MW debugger

* Prerelease MP-safe stdclib on ETO #23

Rhapsody Implementation

* MP tasks become Mach threads
- *SMP: any task or thread runs on any CPU
* Debugging via standard tools

*Mac OS—only debugging calls not
supported

How to Use the MP API

J * Create queues and synchronization objects
- * Create MPProcessors()-1 tasks

* Communicate with the tasks

* Terminate the tasks

Thread Creation Example

err = CreateQueue(&requestQueue);
err = CreateQueue(&replyQueue) ;
for (1=0;i<MPProcessors()-1;i++)

err = MPCreateTask(&MyTask,
taskParam[i],
kMPUseDefaultStackSize,
replyQueue, nil, nil,
kKMPNormalTaskOptions,
staskID[i]);

Messaging Example

*Sender:
o — status = MPNotifyQueue(requestQueue,
| pl, P2, P3);

* Receiver:

— status = MPWaitOnQueue(requestQueue,
&pl, &p2, &p3, kDurationForever);

Using the Toolbox
from an MP Task

* MPTaskIsToolboxSafe returns true if
toolbox calls are OK

* MPRPC blocks until main thread calls
WaitNextEvent

* At each WNE call, main thread empties
MPRPC work queue
*void *MyToolboxUsingFunc(
void *param);
* result = MPRPC(
MyToolboxUsingFunc, param);

More Stuff in Native Rhapsody

* NSThread class supports OO thread model
in Yellow Box

* NSThreads can call: stdclib subset, system
calls, Foundation Kit, DPS, AppleEvents

* NSThreads cannot call App Kit

* cthreads can call stdclib subset,
system calls, DPS

* Driver Kit drivers are MP-safe
* Java threads of course

MP Task Tips

v * Correctness:
- — No 08K code

— No preemption on main cpu when
QuickTime is running (Mac OS)

— No Mac OS toolbox calls (beware callbacks)
* Performance:

— Substantial

— Memory bandwidth

— Avoid contention for globals

— Watch out for lock contention

