














Invoking Methods

* Methods can be invoked by using an
object reference, followed by a period,
followed by the method name

* reference.methodNamey)

— Instance methods are invoked using
instance references

— Class methods can be invoked using the
class name or an instance reference




Using Converter

Accessling a class variliable

Converter.numberOfConversions:

Accessling an 1lnstance
varilable

theConverter.name:;

Invoking a class method

Converter.incrementConversions():

Invoking an i1nstance method

theConverter.convert (100);



Referring to the Receiver

* The instance that was invoked can be
referred to within the method as this

— An instances’ variables and methods are
implicitly referenced via this if they do not
have an explicit reference

* The following are equivalent:

— memberName
— this.memberName




Method Overloading

* Multiple methods with the same name and
different number or type of parameters
can be defined

— The system will choose the appropriate
implementation at run-time based on
the arguments

— Return type must remain the same
* Language operators cannot be redefined




Overloading convert
Expects a double

double convert(double doublelIn)...

Expects an ilnteger

double convert{(int intIn)...

Expects an integer array

double convert(int[] intArrayIn)...

Expects and integer and a
double

double convert(int i, double d)...




Constructors

* A constructor is special type of method
that initializes a new instance

— A constructor has the same name as
the class

* Classname()...
— Constructors do not indicate a return type

* A default constructor is created
automatically for every class



Multiple Constructors

* It is typical to have several different
constructors, each of which takes
different arguments

* From within a constructor, use this() to
invoke another constructor from the same
class, use super() to invoke a superclass’
constructor




Using Multiple Constructors

class Multi extends Single {

int size;

String name;

Multi(int size) {
super(size):
this.size = size;

}

Multi(int size, String name) {
this(size):;

this.name = name:;




Constants

* Constants can be defined by preceding a
variable declaration with the keyword final

— A final variable cannot be changed

— Constants are typically also declared static

* final static int A = 1;
* final static int Z = 20;




Argument Passing

* Arguments to methods are passed by value

* Passing a reference type by value is
somewhat like passing a pointer type
by value

— The members of the referenced object can
be modified in the receiving method

— The object itself cannot be replaced




Protection and Access

* Access to objects and members of a class
is controlled

— An object’s members can be:

* public—visible to all other objects
* Visible within the current package
* protected—visible to subclasses

* private—only visible within the
object itself



Garbage Collection

* The system takes care of deallocation
— There is no deallocate or free method

* Objects are automatically garbage
collected when there are no more
references pointing to them

— Java does not define the garbage
collection technique




Operators

* Operator precedence is similar to that
of Cor C++

* Java adds some new operators
— + —string concatenation

— instanceof—checks if the value is an
instance of particular class or interface

z*‘ * C’s ¥ &, and sizeof operators do not exist



Flow Control

* if statements can only test booleans
* switch statements must use ints

* Labelled break and continue statements
allow branching to specific locations in
the code

* for statements allow loop variables to be
declared within the initialization block




1

k3
b4

i

¢

g
i

gﬁ: G

Exception Handling

* Java provides exception handling for
errors using try—catch—finally

— Code to be executed is found in the
try block

— Code to provide remedies for errors in
the try block follows in the catch block

— Code to be executed in any case is in

the finally block



Simple Output

* System.out. println provides the ability to
write to the standard output

* Use string concatenation to create
your output

— String concatenation will automatically
convert many types

* String pi;
*pi ="pi =" + 3.14159;
* System.out.println(pi);




Dynamic Loading and Binding

* Java classes are loaded as they are needed

* Method names are bound to their
implementation when they are first called

* Superclasses can change their
implementation without forcing their
subclasses to be recompiled




Abstract and Final Classes

* Abstract classes are classes that act as the
basis for subclassing

— They cannot be instantiated
— Precede the class keyword with the abstract
keyword
* Final classes are essentially sealed
— They cannot be subclassed

— Precede the class keyword with the final
keyword




Interfaces

* Interfaces are a way of sharing method
declarations across multiple classes

— An interface only describes the method
name, parameters and return type

— It has no implementation

* An interface definition uses the interface
keyword
— It contains method prototypes




Interfaces

* Interfaces can be extended using the
extends keyword

* A class indicates the interfaces it
implements with the implements keyword

— It must implement every method
— It can implement multiple interfaces

* An interface can be used as a type




Interfaces

interface Steerable {
void turnLeft():
void turnRight():
void goStraight():
}
class Vehicle implements Steerable {
void turnLeft() { ... }
void turnRight() { ... }
void goStraight() { ... }
}

Steerable car = new Vehicle():




Persistence

* There is no persistence for Java instances

— — Instances are created at run-time from
| class files

— To store state you need to use external files
or databases




Applications

* Java applications are classes that contain
a main method

— main is defined as follows:

— public static void
main(String|] args)

* The array args passed to main contains the

command line arguments that the
application was invoked with

— args[0] is the first argument




Applets

* Applets are subclasses of the class
java.applet. Applet

* Applets take over an area of aweb
browser’s page
— Applets respond to events and draw

* Applets also respond to a set of well
defined lifecycle messages

— init, start, paint, stop, destroy




Threads

* Java has language level support for threads

— Java can manage locks for each instance
and method

— The locks prevents the use of the instance
or method in one thread if another already
has the lock

* The synchronized keyword indicates the
method or object to lock



Security

* Java supports a runtime security manager

— It can check the bytecodes it is provided to
make sure they are valid

— It provides policies to prevent or allow
certain operations based on the source of
the code—local or network—to be run



Native Methods

* Java supports calls to externally
compiled code

— A method with the native keyword acts as a
stub that gets bound to the actual code

— This allows existing code, like Macintosh
toolbox code, to be invoked using Java

* See MR] SDK for examples



References

* Here are some references to use to
continue learning Java
— The Java Tutorial
* http://java.sun.com/tutorial/
— The Java Programming Language
* Arnold, Gosling—Addison-Wesley
— Java in a Nutshell
* Flangan— O'Reilly & Associates







