

Metahandler

The plug-in method dispatcher

* Each class of plug-in has a set of methods
that get called via the metahandler

* These methods vary depending on
whether your plug-in class is

— Element, Attribute, Group, or Renderer

* The method handler is essentially a big
switch statement

— Returning (usually) function pointers based
on the set of constants passed in

Metahandler

Example

b vd static TQ3XFunctionPointer NameAttribute HetaHandler (
o TQ3XHethodType methodType)
| {
s¥itch (methodType) {
case kQ3XHethodTypeObjectClassY¥ersion :
return (TQ3XFunctionPointer)
Q3 OBJECT_ CLASS_ YERSION(
major¥ersion, minoryYersion),;
case kQ3XHethodTypeObjectTraverse
return (TQ3XFunctionPointer)
NameAttribute Traverse;
/* a bunch of other method dispatchers ... */
default:
return (TQ3XFunctionPointer) NULL;

Metahandler

Notes

* The example shows three things:
— Versioning
— Returning a method pointer
— Default behavior

* There are handlers that must be defined
for each specific type of plug-in

— See the documentation for details

Versioning

You should supply a plug-in version

* CFM will be used to decide which of
identical plug-ins to use

— Based on the fragment name
* Supply a version

— So that QuickDraw 3D is able to discern the
correct version for your plug-in

— If no version is supplied, the default is to
set the version to “0.0”

— Only the highest version will be loaded

Returning a Method Pointer

* Check the header files for the format
of a function associated with a particular
constant

* For example:

¥define kQ3XHethodTypeObjectTraverse

Q3 _METHOD _TYPE('t’,’'r’,’v’,’s’) /* byte count */
Fx
* TQ3X0ObjectTraverseHethod
F
* The “data” is a pointer to your internal element data
x
* The viev¥ is the current traversal vievw.
x/
typedef TQ3Status (QD3D _CALLBACK *TQ3XObjectTraverseHletho«
TQ30bject object,
void *data,

TQ3¥ievObject vievw);

Returning a Method Pointer

* Irrespective of the format of the return

value, it is always cast to type
TQ3XFunctionPointer

* Some constants return a value NOT a
function pointer

— Version
(kQ3XMethodTypeObjectClassVersion)

— IsDrawable
(kQ3XMethodTypeObjectIsDrawable)

Default Behavior

* In the case where you don’t supply a
method, return NULL

* If appropriate the default method gets
called if you return NULL

Termination on Mac OS

Called by CFM

* On Windows the DLL Main function gets
called with DLL_PROCESS DETACH

* On Mac OS you need to supply this:

void NameAttribute ConnectionTerminationRoutine (void)

{
TQ3Status theStatus ;

if{ pSharedLibrary != NULL) {
Q3XSharedLibrary_ Unregister(pSharedLibrary);
pSharedLibrary = NULL;

}

theStatus = NameAttribute Unregister() ;

Elements and Attributes

Introduction

* Used to add custom data to QD3D objects
* See develop Issue 206

* What’s the difference between them

— Attributes can be inherited, elements
are not

* There is a sample plug in attribute on the
conference CD

Registration

Called byQuickDraw 3D

* This is the function registered earlier

TQ3Status NameAttribute Register(void)
{

1

TQ3ElementType
myElementType = kElementTypeName ;

pNameAttributeClass =
Q3XElementClass_Register(
&myElementType,
kElementTypeNameString,
sizeof (TQ3StringObject),
NameAttribute HetaHandler);

if (pNameAttributeClass == NULL)
return kQ3Failure;

return kQ35Success;

Registration

Important note

* Registration is by name

— The binary type for your class is assigned at
runtime, and returned to you in the
registration function

* Use this returned type in calls like
Q3Set_Add()

* Either save a reference to the type
returned by the register call

* Or use Q3XObjectClass_Getlype to get the
type back from the system

Attribute/Element Methods

* For a description of the methods an
attribute can implemented see pages
6 through 7 of ‘Adding Custom Data to

QuickDraw 3D Objects” in develop
issue 20

* A copy of this is on the conference CD

Name Space Changes

Changes from develop and the Book

* If you are reading the documentation for
attributes note the following changes
(there are more than this, but this will give
you the general idea)

% TQ3FunctionPointer ————> TQ3XFunctionPointer

TQ3HethodType ———> TQ3XHethodType
Q3¥iev_Submit¥riteData ———> QQ3X¥iev_ Submit¥riteData
kQ3HethodTypeObjectTraverse ——> kQ3XHethodTypeObjectTraverse
kQ3HethodTypeObjectReadData ——> kQ3XHethodTypeObjectReadData
kQ3HethodTypeElementCopyadd ———> kQ3XHethodTypeElementCopyidd

kQ3HethodTypeElementCopyGet ——> kQ3XHethodTypeElementCopyGet

Registering a Plug-in Group

This applies to plug-in renderers foo

* First define your unique object type by
using “Q3 OBJECT T YPE” macro

* Declare a data structure to store private
data for your plug-in

¥define kQ3XXXGroup
Q3_OBJECT_TYPE(X', 'X’,’X’,’G")

typedef struct XXXGroupPrivate{
f// XXX Private Data
} XXXGroupPrivate;

TQ30bjectClass XXXGroupClass;

Registering a Plug-in Group

* Different registration API call than for
Elements and Attributes

fpp
TQ3Status XXXGroup_ Register(void)
B3 XXXGroupClass =
% Q30bjectHierarchy RegisterClass(
(kQ3GroupTypeDisplay, // Parent Type
kQ3XXXGroup, /{ Group Type
“XXXGroup”, // Group Name
XXXGroup HMetaHandler, // HetaHandler
NULL, f//{ YirtualHetaHandler
0 // Hethods Size

sizeof (XXXGroupPrivate))/ Instance Size

if (XXXGroupClass == NULL)
return kQ3Failure;

return kQ35Success;

Plug-in Examples
and Documentation

* On the SDK and the WWDC CD

— Plug-in attribute: ‘name’

— 2 Plug-in renderers (Simple renderer
and Wireframe)

— Plug-in group: display proxy group (DPG)

* This is a simple level of detail group

Part IV—Picking With 1.5

Managing aser selection with QuickDraw 3D

Types of Pick Objects

Window Point Window Rectangle

Kinds of Pick Detail
Information Calculated...

* TQ3PickDetail specifies information
calculated per hit:

— Pick ID

— Group hierarchy path
— Reference to object hit
— Local to world matrix

Kinds of Pick Detail
Information Calculated

* TQ3PickDetail (cont)
— XYZ intersection point
— Distance from camera
— Surface normal vector
— Shape part
— Surface UV parameterization

Geometry Shape Pick Parts

1Q3PickParts style specifies parts tested

* Object Level

— Pick intersects a geometry only
once anywhere

* Part Level

— Pick intersects several parts of the
same geometry

— Object / Face / Edge / Vertex or
any combination

Picking Process

* 1. Setup and create a pick object
* 2. Submit objects in a picking submit loop
* 3. For each hit

— Get pick detail information
— Use this information for interaction

* 4. Specify a new pick location
— (Repeat steps 2 through 4)
* 5. Dispose the pick object

Pick Setup Information

* Choose type of pick object
- * Initial pick location
* Pick detail information

* Sorting method
— Near to Far / Far to Near / None
* Maximum number of hits

* Vertex and edge tolerances

Picking Submit Loop Example

- TO38tatus SubmitPickObijects(TQ3ViewObject wview,

e TO3PickObject pick,
TOQ3GroupObject group,
TQ38tyleObject subDivStyle)

TO3ViewStatus viewStatus;

Q3View StartPicking(view, pick);

do {
Q3Style Submit(subDivStyle, view);
Q3DisplayGroup Submit{group, wview);
viewStatus = Q3View EndPicking({wview);

L while (viewStatus == kQ3ViewStatusRetraverse);

return (viewStatus == kQ3ViewStatusDone) 7
kQ38uccess : kQ3Failure;

Pick Hit List

* Hits accumulate in the pick object
and are retrieved after performing a
submit loop

* A hit contains the pick detail information
for a single intersection

* The maximum number of hits to be
returned are specified at setup

* Hits are referenced by index

* Hits are sorted relative to distance from
the viewer

Querying a Pick
for Hits Example

Get intersection point in world space

e
TQ3Status Get¥VorldPoint(TQ3PickObject pick,
TQ3Point3D *yorldPoint)
{ TQ3Status status;
t unsigned long numHits;

A

Q3Pick GetNumHits(pick, &numHits);

if (numHits == 0)
return kQ3Failure;

status = Q3Pick_GetPickDetailData(
pick,
0,
kQ3PickDetailHaskXY¥Z,
vorldPoint);

return status;

Querying a Pick
for Mesh Shape Parts

TQ3Status ChangeHeshPart(TQ3PickObject pick)
{

1

TQ3ShapePartObject shapePart;
TQ3HeshComponent comp ;

status = Q3Pick_GetPickDetailData(
pick,
0,
kQ3PickDetailHaskShapePart,
&shapePart) ;

if (shapePart == NULL || status == kQ3Failure)
return kQ3Failure;

status = Q3HeshPart_GetComponent(shapePart, &comp);

Querying a Pick
for Mesh Shape Parts

|

sv¥itch (Q3HeshPart GetType(shapePart)) {
case k(Q3HeshPartTypeHeshFacePart:
DoFace(component, shapePart) ; break;

case k(Q3HeshPartTypeHeshEdgePart:
DoEdge (component, shapePart) ; break;

case kQ3HeshPartTypeHesh¥ertexPart:
DoYertex(component, shapePart); break;

}

return kQ3Success;

Summary—The Three Ps

* Performance
— Making the right design decisions
— Consider writing to RAVE
* Plug-in support
— Developer opportunity providing plug-ins

— Makes vour application more desirable for
your customers

* By adding valuable features that YOU DON’T
HAVE TO IMPLEMENT YOURSELF!!

* Picking

SN A

S SN
o

