








Endian Issues

* In CPU Register
High byte (15...8)

What is Big Endian?




Endian Issues

* What is Native Endian?
* Endian.h is your friend

* Cross-platform code must be
Endian aware



QuickDraw

* GWorlds created using native
bitmaps (DIB)

* Fully featured

* Handles all pixel formats

* NewGWorldEx for creating non-Mac
pixel format GWorlds




B —
S O

3 QuickTime Audio Environment

Macintosh




3 - QuickTime Audio Environment

Macintosh




Audio Data Path

* Sound formats supported
— 8-bit offset
— 8-bit signed
— 16-bit signed Big/Little Endian
— 32/64-bit Float
— IMA, Mace, ADPCM, ulLaw, aLaw
— Plug in your own compressors
* Internal formats

— Data exchange with Sound Manager is in
native format

— Compressors, Decompressors, H/'W SDevs



Audio Input

* Macintosh
— Sound device drivers
* Windows

— Sound input components (instead of a
driver reference, a component instance)

— Waveln provided
— Must produce Native Endian data

|




Video Input

* Macintosh and Windows
— Common video digitizer API (VDIG)

* QuickTime requires some user
interface elements

— Sequence Grabber panels
* Sound and video
— Standard Compression extensions

— Movie info panels

* Toolbox elements exist to support this
level of Ul






Resources

* Yes, Virginia, Mac resources can exist
on Windows

* Available for your code
— Required for components

* Available for getting data stored in
resource files

— eg. Sound Designer II, PICS

* Dual fork files on Macintosh
— Hides the separate resource file from users




Resources

* Single fork files on Windows

— If there is a resource file, it is visible to
the user

* Movies

— Movie resource can be in the resource fork
or data fork

— Reference movies vs. self-contained movies
— Data fork only movies
— Data fork only movies with external references




Resources

* Single fork files on Windows

— If there is a resource file, it is visible to
the user

* Movies

— Movie resource can be in the resource fork
or data fork

— Reference movies vs. self-contained movies

— Data fork only movies

— Data fork only movies with external references
QuickTime can use separate resource fork files

But don’t hurt the userst



Resources

* For data files, all the popular forms
— Parallel resource directory
* resource.frk, .rsrc

— Parallel resource file
* ifilename, filename.#res, filename.qtr

— Multi-stream NT files
— Apple Single




Resources

* For data files, all the popular forms

— Parallel resource directory
* resource.frk, .rsrc

— Parallel resource file
* ifilename, filename.#res, filename.qtr
— Multi-stream NT files
— Apple Single
For executable files (.QT X, .DLL, .EXE)
QTR resource tiles can be used

The resource fork can be merged with the
executable file




Component Manager

* Mechanism to plug your code into
QuickTime

* Thing Resource
— Type, Sublype, Manufacturer
— Code Reference
* Code Resource/Code Fragment
* DLL entry point
* Components delivered as .QT X files

— Is a renamed DLL file
* Component entry points exported
— Thing resource



Files

* QuickTime expects Macintosh file
references and aliases

* Files can be manipulated using the
File Manager

* Window’s file handles can be converted
to Mac file references




Scheduling Model

* Execution sequencing
* Shared data protection




Macintosh Interrupts

| * Interrupt 1 — Timer tasks

- * Interrupt 2 — Sound tasks, Async I/O tasks
* Interrupt 3 — Deferred tasks

* Application tasks




Thread Model

* Timer thread—priority A

- * Sound thread—priority B

* Async I/O thread—priority B

* Deferred task thread—priority C
* Application threads—priority D




Data protection

* Data shared across threads must
be protected

* Queues
— InitializeQHdr and TerminateQHdr
— QHdr struct has a mutex field

* Cross-platform mutex implementation
— Protect your own data




Re-Entrancy

* Mac Toolbox is generally not re-entrant

- ~ *Only one thread can be executing in QTML
at a time

— Managed transparently by QuickTime




Re-Entrancy

* Mac Toolbox is generally not re-entrant

* Only one thread can be executing in QTML
at a time

— Managed transparently by QuickTime

Threads emulating Macintosh Interrupts
are the exception
MUST follow Macintosh interrupt rules
Only call interrupt safe toolbox routines

MUST register and unregister
with QuickTime




Event Model

* Macintosh
— Classic WaitNextEvent loop

— Application dispatches to appropriate code
based on the event type

* Windows
— Message loop

— Application sends messages to system to
dispatch to appropriate code

— Some window messages get dispatched to
WndProcs without appearing in the
message loop




Event Model

* QuickTime uses the Macintosh
Event Model

* WinToMacEvent converts a Windows
message to a Mac EventRecord

* Then call MCIsPlayerEvent

S
3




Window/Port Association

* Implicit connection between HWNDs and
WindowPtr

* Given a WindowPtr created by QuickTime,
you can get the HWND

— You can use GDI to draw

* Can create a GrafPort from an HWND
— You can use QuickDraw to draw




Use the Paradigm Best for You

* System types
— Windows Message/EventRecord
— HWND/WindowPtr
— HFILE/file reference number
— DIB/GWorld

* Can mix and match

S
3




QuickTime 3.0

* Summary







