

Network Protocols

The AppleIalk stack

- * Apple Network Server Code Base
* High Performance

* Routing (RTMP, AURP)

* Multihoming

* MP efficient on ANS (we know where
the locks go)

Network Protocols

Network Services

- * The usual suspects (Bind, NIS, ...)
* Netlnfo

* NFS (Versions 2, 3, NQNFS)

* Multicast Routing

Network Apps, APIs, and Services

N R O NS

Services

ckets/Mach fr“’f

Network Apps, APIs, and Services

* The Blue Box
.- — One Special Application
* Network APIs and Services

Blue Box Support

“Full” Mac OS networking support

* Native OT above the hardware/driver layer
* Support in IOKit

— A demuxer for packet delivery
* Protocol Configuration

— TCP/AP: one address required
— AppleTalk: independent stacks

Network APIs

Platform-specific and cross-platform APIs—
your choice

W *Mach IPC APIs
* Socket API for TCP/IP (Classic BSD)
* AIX AppleTalk API
* Objects
— PDO

Network APIs—the Low Level

Low-level, cross-platform or platform-specific

W *Mach IPC
— Cross-platform

* Sockets/Applelalk
— Platform-specific

Rhapsody
Network APIs—
The Object View

Blaine Garst
Yellow Box Dude

Network APIs—
Objects and the High Ground

Distributed Programming is still hard

* Problems
— Security
* Solutions

Network APIs—
Objects and the High Ground

Distributed Programming is still hard

* Problems
— Security
— Availability
* Solutions

Network APIs—
Objects and the High Ground

Distributed Programming is still hard

* Problems
— Security
— Availability
— Scalability
* Solutions

Network APIs—
Objects and the High Ground

Distributed Programming is still hard

* Problems
— Security
— Availability
— Scalability
— Reliability
* Solutions

Network APIs—
Objects and the High Ground

Distributed Programming is still hard

* Problems
— Security
— Availability
— Scalability
— Reliability
* Solutions

— $955559899

S
3

Network APIs—
Distributed Programming

Manry approaches

* Fat clients

— TP Monitors

— Custom solutions
* Thick clients

— Distributed programming
* Thin clients

— Web technologies

Distributed Programming

Fat client: Divide and Conquer!

* Use databases for data

— Data in RDMS, flat files, wherever
* Custom logic in “object” servers

— Build object “schema” with EOModeler
* Vend via Client application

— Custom UI (custom/standard widgets)
— “Associations” synchronize views

Distributed Programming

Thick client

* RMI
* CORBA
* Distributed Objects

Distributed Objects (a.k.a. PDO)

* Extensible
— Substitute underlying transport
— Supply security layer
— Substitute naming layer
* Integrated support in ObjC language
— oneway, in, out, inout keyword support
— byref, bycopy object copying directives
* Transparent programming
¢ 3 — Exceptions, objects, etc. flow unimpeded
| ‘g — Garbage collection

. »
1 A S
i
- 4 .
- > ’ "Z',(‘:
. , - >- o -
, o o syl
- o5 4

Distributed Objects

Client and server (!!) coding example

* id client = [NSDistantObject
proxyWithName:(@“ideas”
host:(@“apple.com”];

* [client postSuggestion:(@“buy NeXT”];

* id conn = [NSConnection
connectionWithRoot:[Ideas new]
name:(@“ideas”];

* [INSRunLoop currentRunLoop] runj;

Web Programming

Thin client

* Browser based clients

— Relieves worry about application
distribution

* Server based computation
— Somewhat scalable
— Little to no transactional state

Web Programming: WebObjects

Object Framework for composing dynamic
web pages

* 34+ tier architecture

* Web clients

— Web servers (Netscape, Microsoft, Apache)
— Object Servers (EOF)
— Database Servers

* JavaScript, Java applets, Frames,
etc., support

SN A

S SN
o

