

Object Oriented
Programming
and Languages

Jordan Dea-Mattson

Senior Evangelist
¥ Rhapsody Evangelism

Object Oriented
Programming
and Languages

Steve Naroff

Senior Technologist
Y Rhapsody Development
Tools

Session Topics

| * Object Oriented Concepts
.- ¥y - Language Requirements

* Language Support

* Closing Thoughts

Object Oriented Concepts

Oriented Conce

[

Object Oriented Concepts

ect Oriented Concepts

Object Oriented Concepts

Abstraction

el oo [Rl

Language Requirements

Religion (circa '87)

w *Dynamic Object Model
— Serve application frameworks and tools

Language Requirements

Religion (circa '87)

Easy to Learn
“Less is more” principle

Language Requirements

Religion (circa '87)

Small footprint
Code and meta-data must be shared

Language Requirements

Religion (circa '87)

Smooth integration with ANSI-C/C+ +
Embrace legacy code

Language Requirements

Religion (circa '87)

Dynamic Object Model
Serve application frameworks and tools
Easy to Learn
“Less is more” principle
Small footprint
Code and meta-data must be shared
Smooth integration with ANSI-C/C+ +
Embrace legacy code

Dynamic Object Model

Distinctive features

* Introspection
— All objects are self-describing

Dynamic Object Model

Distinctive features

Release-to-release binary compatibility
No need to relink client applications

Dynamic Object Model

Distinctive features

Message forwarding
Integration with other object models

Dynamic Object Model

Distinctive features

C-based API/ABI fully specified
CodeWarrior modules link painlessly!

Dynamic Object Model

Distinctive features

Introspection
All objects are self-describing
Release-to-release binary compatibility
No need to relink client applications
Message forwarding
Integration with other object models
C-based API/ABI fully specified
CodeWarrior modules link painlessly!

Language Support

* Objective-C
* Objective-C+ +
* Java

* Dylan?
* Object Pascal?

Objective-C Type Declarations

Classes — implementation reuse

@interface NSBrowser : NSControl

{

<instance varibles>

}

<methods>

@end

Objective-C Type Declarations

Protocols — design reuse

@protocol NSDraggingInfo
<methods>

@end

Objective-C Object Declarations

// untyped
id anyObject;

// typed by class
NSBrowser *myBrowser;

// typed by protocol
id <NSDraggingInfo> aDrag;

Objective-C Method Declarations

Classic syntax

// instance methods

- (void)setTitle: (NSString *)title
ofColumn: (int)column;

- (void)setDelegate:anObject:

- (void)setAction: (SEL)action:;

// class methods
+ (Class)cellClass:
+ (void)setCellClass: (Class)creator:;

Objective-C Method Declarations

Modern syntax

R

- // instance methods

void setTitleOfColumn(NSString *title,
int column):;

void setDelegate(id anObject):

void setAction(SEL name):

// class methods
static Class cellClass():
static void setCellClass{(Class creator):

Objective-C Method Categories

Birary extensions

@interface NSString(NSStringDrawing)

NSSize size()
void drawAtPoint (NSPoint p):
void drawInRect (NSRect r):;

@end

Objective-C Message Expressions

// classic

[myBrowser setDelegate:ob]]:;

// modern
myBrowser->setDelegate(ob]);
myBrowser.setDelegate(ob]);

Objective-C+ +

What role does it play in the Yellow Box?

* C+ + access to Yellow Box APIs
— Header files are “C+ + aware”

Objective-C+ +

SO NS

What role does it play in the Yellow Box?

Embrace the next generation(s) of C
Legacy code

Objective-C+ +

LSO N

What role does it play in the Yellow Box?

Objective-C able to access “C+ + goodies”
Declarations as statements
Exceptions
Etc.

Objective-C+ +

N R O NS

What role does it play in the Yellow Box?

C+ + access to Yellow Box APIs
Header files are “C+ + aware”
Embrace the next generation(s) of C

Legacy code
Objective-C able to access “C+ + goodies”
Declarations as statements
Exceptions
Etc.

Objective-C+ +

Peaceful coexistence

* Both languages retain...
— Native semantics
— Native time/space characteristics

Objective-C+ +

Does CodeWarrior support it?
* YES!

Objective-C+ + Example

Reunse via aggregation

@interface CalculatorInterface : NSObject

{
id display;
CalculatorEngine *engine;

}

id init():

id equalsKey(id sender):;

id operationsKey(id sender):

@end

Objective-C+ + Example

id init() // display is set automatically
{

engine = new CalculatorEngine;

return self:;

}
id operationKeys(id sender)
{
res = engine->computeResult{sender);

display->setDoubleValue(res):

return self:;

" Java Integration

Design points
* Exploit similarities with Objective-C

Design points

Work with standard Java language tools
No special language/compiler magic

Design points

Leverage “best of breed” JVM technology
Sun, Microsoft, Apple, Metrowerks, etc.

..........

~_ Javalntegration

Design points

Allow hybrid interaction
Aggregation and subclassing

Design points

Exploit similarities with Objective-C
Work with standard Java language tools
No special language/compiler magic
Leverage “best of breed” JVM technology
Sun, Microsoft, Apple, Metrowerks, etc.
Allow hybrid interaction
Aggregation and subclassing

Java Integration

Full client access to Yellow Box APls

public

{
public

public
public
public
public

class Browser extends Control

Browser (Rect frameRect):

native void setDelegate(Object o©):;
native void set@Action(Selector s):
native boolean setPath(String p):

native Array selectedCells():

Java Integration

N S R A N RO RN

Objective-C

Dynamic
Runtime

| ~Java Integration

Objective-C Java

Dynamic . Mrfuat
runtme Machine.

| ~Java Integration

Objective-C Java

Dynamic . Mrtual
nuntime o Machine

~Java Integration

Objective-C Java

Bridge

runtme

_D,ru_umz,
runtme

NIl

Mach

nal

ine

- Java Integration

runtme

MVASLTE 1 22

- Java Mappings

RO NS

Java Mappings

unsigned|

S O NS

- Java Mappings

Java Mappings

Jrnluin Ol

~ Java Mappings

ava Mappings

Java Integration

How does it work?

o * Types that don’t map automatically
— Non-object pointer usage

— Structures, unions, and enums

— Typedefs

~_ Java Integration

How does it work?

Java enabled Objective-C objects
Descendents of apple.core.id
Subclassing “just works”

N S R A R O S

+ _ JavaIntegration

How does it work?

Types that don’t map automatically
Non-object pointer usage
Structures, unions, and enums
Typedets

Java enabled Objective-C objects
Descendents of apple.core.id
Subclassing “just works”

Java to ObjC Bridge Specification

type
BOOL = boolean
NSRect = apple.core.Rect using
NSConvertRectTodava
NSConvertRectFromJava
selector
-isEqual: = equals
-hash = hashCode
-copyWithZone: = clone

_ Java to ObjC Bridge Specification

4

jobs file

Dridget

- - Java to ObjC Bridge Specification

I'l:-' r'|:~' f’.}' f'.j-' r‘,‘!

)

"l ’
LN L R A
s y 3 "
)

oY s o

it

stub functions

Closing Thoughts

Language choices

* Dynamic
— Over static

Closing Thoughts

Language choices

Diversity
Over purity

Closing Thoughts

Language choices

Performance
Over purity

Closing Thoughts

Language choices

Pragmatic solutions

Closing Thoughts

Language choices

Dynamic

Over static
Diversity

Over purity
Performance

Over purity
Pragmatic solutions

SN A

S SN
o

