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Language Support

* Objective-C
* Objective-C+ +
* Java

* Dylan?
* Object Pascal?




Objective-C Type Declarations

Classes — implementation reuse

@interface NSBrowser : NSControl

{

<instance varibles>

}

<methods>

@end




Objective-C Type Declarations

Protocols — design reuse

@protocol NSDraggingInfo
<methods>

@end




Objective-C Object Declarations

// untyped
id anyObject;

// typed by class
NSBrowser *myBrowser;

// typed by protocol
id <NSDraggingInfo> aDrag;




Objective-C Method Declarations

Classic syntax

// instance methods

- (void)setTitle: (NSString *)title
ofColumn: (int)column;

- (void)setDelegate:anObject:

- (void)setAction: (SEL)action:;

// class methods
+ (Class)cellClass:
+ (void)setCellClass: (Class)creator:;




Objective-C Method Declarations

Modern syntax

R

- // instance methods

void setTitleOfColumn(NSString *title,
int column):;

void setDelegate(id anObject):

void setAction(SEL name):

// class methods
static Class cellClass():
static void setCellClass{(Class creator):




Objective-C Method Categories

Birary extensions

@interface NSString(NSStringDrawing)

NSSize size()
void drawAtPoint (NSPoint p):
void drawInRect (NSRect r):;

@end




Objective-C Message Expressions

// classic

[ myBrowser setDelegate:ob]]:;

// modern
myBrowser->setDelegate(ob]);
myBrowser.setDelegate(ob]);




Objective-C+ +

What role does it play in the Yellow Box?

* C+ + access to Yellow Box APIs
— Header files are “C+ + aware”
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Objective-C+ +

Peaceful coexistence

* Both languages retain...
— Native semantics
— Native time/space characteristics



Objective-C+ +

Does CodeWarrior support it?
* YES!



Objective-C+ + Example

Reunse via aggregation

@interface CalculatorInterface : NSObject

{
id display;
CalculatorEngine *engine;

}

id init():

id equalsKey(id sender):;

id operationsKey(id sender):

@end




Objective-C+ + Example

id init() // display is set automatically
{

engine = new CalculatorEngine;

return self:;

}
id operationKeys(id sender)
{
res = engine->computeResult{sender);

display->setDoubleValue(res):

return self:;
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Java Integration

Full client access to Yellow Box APls

public

{
public

public
public
public
public

class Browser extends Control

Browser (Rect frameRect):

native void setDelegate(Object o©):;
native void set@Action(Selector s):
native boolean setPath(String p):

native Array selectedCells():
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Objective-C Java
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Java Integration

How does it work?

o * Types that don’t map automatically
— Non-object pointer usage

— Structures, unions, and enums

— Typedefs




~_ Java Integration

How does it work?

Java enabled Objective-C objects
Descendents of apple.core.id
Subclassing “just works”




N S R A R O S

+ _ JavaIntegration

How does it work?

Types that don’t map automatically
Non-object pointer usage
Structures, unions, and enums
Typedets

Java enabled Objective-C objects
Descendents of apple.core.id
Subclassing “just works”




Java to ObjC Bridge Specification

type
BOOL = boolean
NSRect = apple.core.Rect using
NSConvertRectTodava
NSConvertRectFromJava
selector
-isEqual: = equals
-hash = hashCode
-copyWithZone: = clone




_ Java to ObjC Bridge Specification

4

jobs file

Dridget
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