

Building Network
Savvy Applications
with
MacApp Release 13

Mike Rossetti

MacApp Underground
Cell Chief

Session Description

What we will cover in this session

w *Details on some new features
— Networking
— Platinum appearance
— Threading
* And some words on
— Transition to Release 13

ACS’s Networking Suite

Impress your co-workers with litile effort

* Designed for networking newbies
* Designed for networking gurus

* Abstracted API

* Flexible object-oriented
subsystem

Webinator — ctor

CWebinatorApp: :CWebinatorlApp()
. : TApplication{(‘z272’, 22727"),
& fRecievingData(0)

Ryren
R

fConnections
= TH new CMultiTCPConnectionManager AC;
CReactor AC* aReactor
= fConnections->GetReactor():
aReactor->AquireldleTimeEngine(
TH new TIdleTimeEngine):

MICPConnectionEventReceiver AC::
RegisterForEventsFrom{(fConnections);

fConnections->ListenTo(
CInternetAddress AC::kHTTP):;

Receiving Data — Preparation

. void CWebinatorApp: :PrepareToReceiveData(
CICPConnection AC* inHandler)

inHandler->Receive(TH new CDataReceiver AC):;

Receiving Data

vold C¥ebinatorApp: :DoReceliveData(
CTCPConnection AC* inSession,
CNetwvorkTransaction AC* inRcvr

CFSSpec_AC spec; CTextParser AC parser;
CTextParser AC::CToken token =
parser . Start(

inRcvr—GetStream() . GetReadPositionPtr());

if (token == “GET”)
{

token = parser . GetNextToken(),;

if{token == “/7)
spec.SetName(CStroe3 AC({(“index.html ™)) ;
else
spec.SetName(CStr63 AC(token+1l));
// Advance over length byte
}
inSession—>3end(TH_newv FileSender_ AC(spec,
CFileSender AC: :kDataFork));
inSession—>Send (TH_new¥ CDisconnect AC);

ACS’s Networking Suite

For simple tasks

* Simple API inspired by Java
* Example: CTCPSocket AC

* Blocking, synchronous
calls

* Thread savvy

ACS’s Networking Suite

For complex tasks

* Asynchronous API
* Polymorphic network abstractions

* Manage multiple connections or sessions
simultaneously

* Helper classes for managing single or
multiple connections or sessions

* Queueable net transactions

ACS’s Networking Suite

Platform, framework and provider agnostic

* Chooses provider at run-time
— MacTCP
— OpenTransport
— WinSock
— BSD Sockets

* Not tied to the Macintosh platform
* ...we'd prefer that you use MacApp!

ACS’s Networking Suite

Uses modern C+ +’isms

* Auto pointers

* Reference counting auto pointers
* Templates

* Native exceptions

* Several Design Patterns
* Modern casting operators

ACS’s Networking Suite

Stream-based 1/0O

Ryren
R

s * Streams
* Sources/Sinks

* All compatible with
MStreamable AC

ACS’s Networking Suite

Features available today

* The “plumbing”
* Internet aware

ACS’s Networking Suite

Ioday: The “Plumbing”

- * Asynchronous event handling
* Service handlers

* Service handler managers

* Streams, sources and sinks

* Buffer objects

* Threading savvy

ACS’s Networking Suite

Ioday: The “Plumbing” (cont.)

- * Transaction classes for sending and
receiving files and data

* Text parsing and byte iterators
* Timers

* Abstracted addressing

* Strategy classes

ACS’s Networking Suite

Ioday: Internet aware

* Internet DNR services
* TCP connections
* OpenTransport/MacTCP

ACS’s Networking Suite

Future features

- * WinSock

* BSD Sockets

* Applelalk

* UDP

* TCP Multicasting

* FTP, SMIP, POP, &c.

* Supporting views in MacApp
* Let us know what you'd like

Receive Data — Preparation

CFileReceiver AC* receiver
= TH new CFileReceiver AC(spec,
CFileReceiver AC::kEntireFile):

receiver->SetErrorHandler (TH new
CReceiverErrorHandler):;

inHandler->Receive(receiver):;

inHandler->Send(TH _new CDisconnect AC):

Receive Data

if(inTransaction—>IsComplete())

{

CFileReceiver AC* fileReceiver
= dynamic_cast<CFileReceiver_ AC*>
(inTransaction);

: :ThrowIfNULL AC(fileReceiver);

TFile* file = new TFile;
file—>Specify(fileReceiver—>GetFileSpec()),
HandleReceivedFile(file);

}

Sending Data

Templatelterator_ AC<TFile*> iter(aFilelList),
TFile * aFile = iter.First();

while (aFile)

CRefCountingPtr_ AC«CServiceHandler_ AC>
newConnection = fConnections—>ConnectTo(
CInternetAddress_AC(remoteAddressStr,
remotePort));

CFileSender AC* sender
= TH_new CFileSender_ AC(aFile—>GetFileSpec(),
CFileSender_ AC: :kEntireFile);

newConnection—>Send(sender);
aFile = iter.Next();

}

MacApp’s
Threading and
Appearance
Manager Support

Brian Arnold

Ryren
R

Appearance Manager

Platinum Appearance

* ACS appearance classes
* New MacApp views
* Ad Lib templates

ACS’s Threading Suite

Overview

* Multitasking within an application
* Improved responsiveness
* Synchronization of shared resources

ACS’s Threading Suite

Quick and easy threaded applications

* Simplified CommonPoint threads
* CThread base class

* Convenience classes
— CThreadRunner
— CWhileSynchronized and CMonitorLock

* Platform agnostic
* Flexible object-oriented subsystem
* Thread Manager, MP, Win32 support

ACS’s Threading Suite

Cibread

* Base class for your threads

* Implements
— Run(), and
— A bool for shutdown

ACS’s Threading Suite

CibreadRunner

W *Convenience class
* Accepts thread and runs it
* Provides

— State inquiry

— Shutdown request

— Join (wait for) its thread

ACS’s Threading Suite

CWhileSynchronized and CMonitorLock

* Stack-based, accepts CMonitorLock
* Acquires lock during ctor
* Releases lock in dtor

Pardon the Interruption

Contextual menus

- F - Expose selection content to plug-ins
* Data Detectors plug-ins
— Maps content and patterns to actions

ACS’s Threading Suite

// Thread implementation
class TSimpleThread : public CThread AC

public:
TSimpleThread(TSimpleThreadView®*
itsView = NULL):
virtual ~TSimpleThread():
virtual void Run():

private:
TSimpleThreadView* fView:;

ACS’s Threading Suite

// Thread implementation

void TSimpleThread: :Run()
{

int iter = 0;
if (fView != NULL)

while (!BhutdownRequested())
{

fView->ThreadedDraw({iter):
Yield():

FracAppMP

class CFracAppEngine

public:

bool CalcCity()
protected:

CMeonitorLock_ AC fLock:

CPoint_ AC fCurrentLocation;

FracAppMP

bool CFracAppEngine::CalcCity()

// Scoped to unlock as soon as able.
// CaleCity is called from within

// multiple threads, so synchronize

// when updating the current location.

CWhileSynchronized AC entry(fLock):
fCurrentLocation.v++;

L

ACS’s Threading Suite

Threads, MacApp and the Future

* Use threads with any framework
— On any platform

* Threaded idle and reactor patterns

* Threaded MacApp event handling

* Rhapsody thread support

TidyHeap
Mike Fullerton

ACS’s TidyHeap Tools

Diagnostic tool

* Suite of C+ + classes and operators
* Tracks and verifies memory blocks
* Reports undeleted allocations

* Flexible and extensible

ACS’s TidyHeap Tools

Diagnostic tool

* Detects double deletions

* Garbage-in action class

* Garbage-out action class

* Force new to fail

* Verify selected or all blocks
* More...

ACS’s TidyHeap Tools

Support Tools

* TidyHeap Director
* NewDropper

Transitioning to Release 13

Here are some thoughts

* One or two weeks typical

* MacApp 3.3 or R12 as a base
* Manual intervention required
* Conversion scripts and tools

Transitioning to Release 13

Faundamental changes
- * l-methods - > ctors
* Free -> dtors
v * Fail -> Throw/Catch

i

* ACS naming convention

At
;}gf * Scope qualification

Brian Arnold
Mary Boetcher
David Clancy
Steven Friedrich
Mike Fullerton
Gary Little
Shaowei Mao
Mike Rossetti

