

Advanced Mac
Networking &
Communicatior

Thomas Weyer

Network & Communicati
Evangelist

Advanced Mac OS Networki
and Communications

Session 109, Thurs. 9:50-710:50 am, Rc

* Introduction and Logistics
* Session Overview

* Other Sessions of Interest
* Contact Information

Session Overview

* Introduction
— Thomas Weyer (weyer@apple.com)
* Single Link multihoming

— David Kim (davidkim@apple.com)
— Chin Niazi (cniazi@apple.com)

*OT 1.1.x APl Changes

— John Comiskey (comisk.j@apple.com)
* Performance Optimization

— Quinn (eskimo1@apple.com)
* Q&A

— DTS & OT Engineering

Previous Sessions of Interes

Mac OS Networking & Communications

* Session 108, Wed. 5:50-6:50 pm, |
* Agenda:
— Evangelism Introduction
* Thomas Weyer (weyer@apple.com)
— OT Roadmap and update
*Richard Ford (rvf@apple.com)
— ARA & OT PPP Roadmap and update
*Richard Ford (rvf@apple.com)
—Q&A
*DTS & OT Engineering

Related Sessions

r % * Rhapsody Core OS Kernel and Runti
- — Session 201, Mon—4:50-5:50 pm, H
* Mac OS Support in Rhapsody’s Blue
— Session 204, Wed—1:30-2:50 pm, F
* Rhapsody Network Administration R
— Session 221, Fri—4:30-5:30 pm, Rox
* Rhapsody Networking APIs & Servic
— Session 220, Fri—5:50-6:50 pm, Rox

Related Sessions

* Feedback Forums

* Rhapsody Core OS Feedback Forum

— Session 292, Thurs.—11:10-12:10
Room J-4

* Mac OS Networking Feedback Forur
— Session 194, Thurs.—1:50-2:50 pm,

Important Contact Informat

r o *ARA 3.0
- — Blanket NDA Seeding

— CCL submission deadline of June
1st (msg@apple.com)

* Third-party OT mailing list

— http://www.stairways.com/mailingl
Ists/opentpt.html

* Apple Feedback addresses

— opentpt@seeding.apple.com
— rhapsody-dev-feedback@apple.com

Y Your Evangelist !l

Thomas Weyer
N&C Evangelism
Apple Computer, Inc.
3 Infinite Loop, MS 303-2E
Cupertino, CA 95014
Phone: (408) 974-5017
Fax: (408) 974-1211
Email: weyer@apple.com
http://www.devworld.apple.
dev/opentransport/

Single Link
Multihoming

David Kim

enior Software Engine
MacOS Networking

Introduction

* Ability to configure additional IP
Secondary addresses with IP Primar
address active

* Meet needs exhibited by ISPs prima
for the purpose of Vanity IP addres
multiple hosting by Internet servers

* Not for End User

Configuration

P Primary address is configured usi
'CP/IP control panel

* [P Secondary addresses are configu
using entries in a text file named “1
Secondary Addresses”, which

resides in the System Preferences f

* Addresses are not validated, duplic
addresses will be reported

* The number of addresses is only lin
by avallable memory

Support

*New API to retrieve IP
Secondary addresses
— pascal OSStatus
OTInetGetSecondaryAddresses

(InetHost* addr, UInt32+*
count, SInt32 wval);

* Primary address must be configure
Manually

Support

*|P Secondary addresses:

- — Do not have to be configured in a
contiguous block

— Will use the same subnet as the
Primary address

IP Secondar
Addresses Format

*One IP address per line
* Example:

list of IP Secondary addresses
15.0.0.2

15.1.1.5

15.3.4.5

;15.1.2.0

*Use of “;” on a line indicates the lir
Ignored, "as in Hosts file

Developer Tips

* New fIPsecondaryCount fleld I1s adde
1O InetInterfaceInfo structure

* Call orInetcetInterfaceinfo for the
fIPSecondaryCount

* Call OTInetGetSecondaryAddresses
for all the IP Secondary addresses

* Call orBind with a specific IP addres
listen on that address

- OT API Change
John Comiskey

‘Senior Software Engine
MacOS Networking

Overview

* These APIs are new in OT 1.1.1.

w *Thisis a subset, refer to the Develc
| Notes for more complete informati

New DLPI Template

*dlpiether.c IS a new DLPI driver
template from Mentat that replaces
previous template from Apple

* Supports version 2 of the DLPI spe:

*Included in SDK along with detailed
documentation

OTSetMemoryLimits
and OTSetServerMode

*Force OT memory pool to grow
Immediately and never shrink

* Useful for servers that don’t want t
for the pool to grow, which can onl;
happen at System Task time

* Prototypes for oTsetMemoryLimits a
OTsetServerMode are not In any heat
files to prevent them from being ak

OTSetMemoryLimits

*OSStatus
OTSetMemoryLimits(size t
growSize, size t maxSize);

— Pool will immediately %row by grows
bytes and will never shrink

— The maximum pool size is set to ma:

— Default maxSize for OT is 10% of
physical memory

OTSetServerMode

*void OTSetServerMode():;

— Pool will immediately grow by 2MB a
will never shrink

— Does not change the maximum pool

OTUseSyncldleEvents

* Used to enable or disable |
koTsyncIdleEvent for your endpoint

* When enabled your notifier will be
called with a koTsyncIdleEvent
repeatedly while OT is waiting for a
sync call to complete

* |t Is safe to call vieldToAanyThread a
this point since 1t Is only called at S
Task time. This 1s the only notifier ¢
that can safely be used to call
YieldToAnyThread

OTUseSyncldleEvents

* The notifier for the providerref Wil
recelve koTsyncidleEvent While the
providerref IS blocked by Ol

* OSStatus
OTUseSyncIdleEvents (ProviderRef
ref, Boolean useEvents);

— ref is the ProviderRref (i.e., endpoin
that wants to receive
kKOTSyncIdleEvent

— usekvents is true to enable |
kOTsyncIdleEvent, false to disable |

OTEnterNotifier
and OTLeaveNotifier

* Used to prevent your notifier from
being entered

* Useful for critical sections outside ¢
the notifier

OTEnterNotifier
and OTLeaveNotifier

* Boolean

o OTEnterNotifier (ProviderRef
ref);

— returns true If successful

— returns false If the notifier is
currently entered
*vold
OTLeaveNotifier (ProviderRef
ref);

OTGate API

* Used to serialize the the processing
data or events

* Common use Is to serialize OT notit
events across multiple endpoints tc
critical section Issues

* Consists of oTInitcate, OTEnterGate
and oTLeaveGate

* See “Open Tpt Module Dev. Note”

OTGate API

* Client example:

— Serialize OT events with API calls the
your code handles from above

— HTTP implemented as an OT client
would ngeed to serialize OT events wi
calls to its API

* Module example:

— When the sync queue level is less
restrictive than sQLVL_MODULE

n Transpol
Performance

Quinn “The Eskimo!”
Dveloper Technical Supp

Overview

* Why you don’t need this talk!

* General rules for optimization

* Measuring your performance

* OT-specific optimization tips

* General Mac OS optimization tips

Why You Don’t Need This T

Avoid Premature Optimization

* As a DTS engineer, | see this proble
the time

*Bo3b’s Rule: I’d rather be windsurfii

*|t’s hard to get 100% performance
traditional Mac OS

— S0 don’t try unless you are 100% ce
that your product needs it to succee

— e.g., NewsWatcher, a very successfu
Internet application, uses polled I/0

Quinn’s Bogus Chart

Networking Performance vs Coding Effc

Synchronous Asynchronous

Traditional
MacOS

| “Real” OSes

Performance

Coding |

General Optimization Tenet:

* Make 1t work, then make 1t go fast
— Reliability is more important than sp«
* Algorithms have the most effect

— If you control both ends of the conn
design your protocol for speed

— Unfortunately, this is often not the ¢
* Decide on good performance metric
* Set a performance goal before you
* Stop when you hit it
* Profile before you change code

Algorithmic Examples

Change Your Approach, Go Much Faste!

* AppleShare IP

— You could tweak the small things unt
end of time, but you would never ge
speed benefits that switching to a f:
underlying protocol yields

*FTP client

— Using polled 1/0 for the command
connection, notifiers for the data
connections

Performance Metrics

* Highly application specific

* Maybe your program has an
Industry standard

— e.g., WebStones?

* Otherwise, you have to develop
your own metrics

*Don’t forget subjective metrics

Profile Before You Start

* Otherwise you risk wasting time
optimizing the wrong thing

— e.g., server mé:]ht be file system bou
network bound—if it's file system bc
you're in the wrong talk!

* Instrumentation SDK

— Allows you to add trace points to yo

— Unlike normal profilers, these trace
aren’t based on routine entry/exit

— Works well for asynch |/0O environme

Optimizing Your Network Cc

* The next few slides contain
specific suggestions

* Each suggestion has a
corresponding caution

* You must decide which optimizatiot
are suitable for your application

OT Optimization #1

Program Structure

* Do everything in your notifier...Why

— WaitNextEvent takes forever to ret
* 10 ticks is forever on a 100Mbps net:

— Notifiers offer important
re-entrancy guarantees

— OT offers interrupt-safe
memory management

* However, there are alternative proc
structures that may be fast enougf

Caution #1

Program Structure

* The listen/accept hand-off sequenc
for OT Is particularly scary

— See Technote 1059 for details
— The tilisten Module helps

*You must also take care to avoid
kOTStateChangedErr

— Use OTEnterNotifier _tO SYNC
foreground and notifier threads

— Wait for completion events before
starting new operations

't\A
2 ‘

OT Optimization #2

Cache and Reuse Endpoints

* |t takes longer to create/destroy el
than to bind/unbind them

* Thus, If your program uses a lot of
endpomts (e.g., a web server), you
performance gains by keeping a cac
unbound worker endpoints

* Don’t bind worker endpoints, oTacc
will do that for you

Caution #2

Cache and Reuse Endpoints

* This technique has very few drawb:

*You may find situations where the
OTUnbind falls—In that case just clo
and reopen the endpoint

* Also remember that each endpoint

consumes memory that might be b
used elsewhere

OT Optimization #3

Avoid Copying Data

*OT Is very efficient about data cop

— In the best case, OT can receive and
transmit without any copying

— But you must explicitly enable this a’
* No-copy OTRcv

&\ — Returns pointer to OT buffers, you n
o return It with 0TReleaseBuffer

* Ack Sends mode

— You must keep data around until
T_MEMORYRELEASED

b 4
‘

Caution #3

Avoid Copying Data

* For no-copy receives, make sure yc
return the receive buffer to OT as ¢
as possible

— In many cases, this buffer will be the
driver’'s DMA buffer

*Ergo, don’t modify the buffer!

Caution #3 (cont.)

Avoid Copying Data

* Ack Sends will complicate your cod
because you must track memory
allocation yourself

— e.g., calling CloseOpenTransport witl
outstanding Ack Sends is fatal

* Under certain circumstances, OT m
modify your data buffer

OT Optimization #4

Use OT Utilities Where You Can

- *OT LIFO lists are better
than the traditional OSUtlls
Engueue/Dequeue Foutines

* OT’s memory management is
optimized for networking

*OTTimeStamp IS the best
timestamping on the traditional Ma:

* OT’s deferred tasks will adjust to
system changes better than DTInst

Caution #4

Use OT Utilities Where You Can
* No caution needed. Just do It!

OT Optimization #5

Server Mode

o * OTSetMemoryLimits allows you to
Increase the amount of memory O1
use for buffers

* Useful for servers that are fielding |
simultaneous connections

*If you Just want to push the maxim
number of bits through a single pip
most probably won’t help

Caution #5

Server Mode

* SetMemoryLimits IS @ case where
a performance metric Is very useful

— Giving more memory to OT may
Improve your performance

— ...or it may do nothing

— You need to measure it for your
particular application

* Definitely not recommended for
client software

OT Optimization #6

Protocol Tweaks

e * XTI RCVBUF

— Alters the endpoint’s receive
buffer size

— Affects the TCP “window size”
* XTI SNDBUF
— Alters the endpoint’s send buffer
size
* TCP protocol has a lot of

(currently private) knobs you can
twiddle

Caution #6

Protocol Tweaks

*Like setMemoryLimits, these
techniques require intelligent use

* Changing these values can improve
worsen, or have no effect

* The effect may even vary from site

* My recommendations:

— Test in production environments to |
sensible defaults

— If you find gireat variance, put it und
user contro

General Mac OS Optimizatio

* Try to avoid the file system
- — Cache everything you can

— When you can’t, call the file system
asynchronously

— And call it for big chunks of data
— Double buffer file and network |/0O

— See DTS Technote FL 16 “File Manac
Performance and Caching”

s *Avoid taking MixedMode hits
&9 ‘é‘ — Don’t disable interrupts

Virtual Server Sample

* HT TP-like sample written by the OT
TCP/IP lead

* Approximately 400 connections pe
second on 200 MHz 604

*Very useful sample If you need spe

* Shows good techniques for most of
optimizations In this talk

* Also shows how to workaround a ni
of OT 1.71.x bugs

Wrap Up

* Think before you optimize

* Define your performance goals befc
you begin

o *OT can be very fast, If you’re prepe
it do the work

* OT Virtual Server Is the place to st:

Suggested Reading

*OT Web Page

— http://devworld.apple.com/dev/
opentransport/

* Inside Macintosh: Open Transport

* Technotes

— Technote 1059 “On Improving Open
Transport Network Server Performar

— Technote FL 106 “File Manager Perfor
and Caching”

* Instrumentation SDK—ETO 23

SN A

S SN
o

