

Apple
Informati
Access Toolkit

Dan Rose

;Manager, ATG Information
- Access Research Program

What AIAT Is

An Information Access lToolkit providing
content-awareness to applications

o * An actual product!

*A modular C+ + library

* Designed to be platform-independent
* Designed to be language-independent
* Formerly known as “V-Twin”

What AIAT Isn’t

* Not an application
* Not something with an interface
* Not (just) a search engine!

What Is Content-Awareness?

Having the ability to support actions based on
what a document is about, such as. ..

- F - Searching

* Filtering

* Browsing

* Summarizing
* Describing

* Organizing

* Filing

*And more...

How It Works

We create a concise representation of what
each document is about

* Based on a statistical analysis of the
distribution of words in the collection

* Representation may be thought of as a
vector in a high-dimensional space

* All the operations boil down to figuring
out how close items are in the space

The Document Space

Claris

/ Apple

Buster

Document Vectors

Claris
Document 3

Document 2

Document 1

—»>

Apple

Buster

Querying the Documents

Buster

Claris

Document 3

Document 2
Query

Document 1

_’.

Apple

Features

* Low disk overhead

— — 15-25% of source text, depending
on features used

— Index is updated in place
* Low and scalable memory overhead

* Uses global context for more accurate
relevance ranking

* Optimized for interactive use

AIAT at Work

*In Apple products...

- — Cyberdog
*In Apple tools and technology
demonstrations...

— Apple e.g.

— Apple HTML Local Search
*In Apple prototypes...

— Vespa (summarization)

— Kinshasa (clustering)

YA R

Analysis

B P P Pl e S P P P PSP ol |

Architecture: Storage

Persistent storage API for arbitrary objects

* Uses safe atomic transactions
*Supports multiple threads
*Typically used in conjunction with...

Storage

Architecture: Storable

Management of objects to be stored

E * [AStorable
— Objects that know how to store themselves
* [AOrderedStorable

— Objects that know how to store
and sort themselves

* JAOrderedStorableSet

— Collections of [AOrderedStorables with
iterators and a variety of access methods

Architecture: Corpus

Definition of the set of documents

- *The corpus classes define what constitutes
a document for your application. It may
bea...

— File system file

— Database record

— E-mail message

— Arbitrary range of bytes

Architecture: Analysis

Transforms input text into index terms

w *Your application may use any or all

of the following analysis modules
— Tokenization

— Stemming
— Stop word removal

Analysis

Example of Analysis Modules

Sending (the letters) to aiat@apple.com!

apple com

sending the letters to

send letter aiat apple com

Architecture: Index

Creates and maintains the concise
representation of document contents

o * Base classes do not assume words; data

could be anything

*Supports efficient processing of both

— Term-based operations
(such as conventional search)

— Document-based operations
(such as similarity search)

*Index lives in storage, anywhere you want

Index

Architecture: Accessor

Used to access content representations
stored in indexes

W *Search
* Describe document
* Find related words

Example: Creating an Index

8 instantiate the storage
g initialize the storage

create the index—in the storage,

on a corpus, with an analysis
add documents to the index
flush index changes

commit the storage

Example: Creating an Index

myStore = MakeHFSStorage(vRef, dir, name);
theStorage->Initialize();

thelndex = new InVecIndex(myStore,
new HESCorpus(),
new SimpleRnalysis());
theIndex->Initialize();
theIndex->AddDoc (anHFSDoc) ;
theIndex->Flush();

theStorage->Commit();

Example: Search with Accessor

instantiate the storage and index as before

open the storage
open the index

create an accessor on an array of indexes
initialize the accessor

use the accessor to search

Example: Search with Accessor

// (instantiate storage & index as before)

theStorage->Open();
theIndex->0Open();

indexes[0] = &thelndex;
theRccessr = new InVecAccessor(lindexes, 1);
theAccessr->Initialize();

byte *query = “new Mac OS technologies”;

numHits = theAccessr->RankedSearch/(
query, strlen(gquery),
NULL, O,
hitArray, maxHits, maxTermsPerDoc,
&progrsskFn, progrsskreq, progrssData);

Rider
Content Search

Easy

Demo

on

Example: Prepare for Sorting

index all the existing documents

for each folder
average the vectors for each document

Example: Prepare for Sorting

// (index documents as before)

TWVector *docVec;
TWVector *folderVec = new TWVector(0);

for (1 = 0; 1 < numDocsInFolder; i++) {
docVec = accessor->GetTWVector(doc[1],0);
folderVec = folderVec->Sum(docVec);

b

folderVec = folderVec->Normalize();

Example: Sorting New Files

for each new document

. add document to index

compute similarity with each folder
move document to most similar folder

Example: Sorting New Files

// (add doc to index, make accessor)
docVec = theAccessor->GetTWVector (doc, 0);

bestFolder = kNoFolder;
bestScore = -1.0;

for (3 = 0; J < numFolders; Jj++) {
score = docVec->Similarity(folderVec([]]);
if (score > bestScore) {
bestScore = score;
bestFolder = 7;

b
b

// now move doc to bestFolder

to Folders

Demo

Sorting Files

Developer Opportunities

* Enhance your existing application
with search or other capabilities

* Help manage Internet/Intranet
information

* Develop custom AIAT modules,
e.g., for other languages

* Help create a whole new class
of content-aware applications

AIAT Status and Availability

AIAT 1.0 currently available for licensing

* For more info...
— Web: http://devworld.apple.com/dev/aiat
— E-mail: aiat(@apple.com

.apple.com/dev/aia

aiat(@apple.com

